4.7 Article

A survey of techniques for incremental learning of HMM parameters

Journal

INFORMATION SCIENCES
Volume 197, Issue -, Pages 105-130

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.ins.2012.02.017

Keywords

Incremental learning; On-line learning; Hidden Markov model; Limited training data; Expectation-maximization; Recursive estimation

Funding

  1. Natural Sciences and Engineering Research Council of Canada
  2. Fonds Quebecois de la Recherche sur la Nature et les Technologies

Ask authors/readers for more resources

The performance of Hidden Markov Models (HMMs) targeted for complex real-world applications are often degraded because they are designed a priori using limited training data and prior knowledge, and because the classification environment changes during operations. Incremental learning of new data sequences allows to adapt HMM parameters as new data becomes available, without having to retrain from the start on all accumulated training data. This paper presents a survey of techniques found in literature that are suitable for incremental learning of HMM parameters. These techniques are classified according to the objective function, optimization technique and target application, involving block-wise and symbol-wise learning of parameters. Convergence properties of these techniques are presented along with an analysis of time and memory complexity. In addition, the challenges faced when these techniques are applied to incremental learning is assessed for scenarios in which the new training data is limited and abundant. While the convergence rate and resource requirements are critical factors when incremental learning is performed through one pass over abundant stream of data, effective stopping criteria and management of validation sets are important when learning is performed through several iterations over limited data. In both cases managing the learning rate to integrate preexisting knowledge and new data is crucial for maintaining a high level of performance. Finally, this paper underscores the need for empirical benchmarking studies among techniques presented in literature, and proposes several evaluation criteria based on non-parametric statistical testing to facilitate the selection of techniques given a particular application domain. (C) 2012 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available