4.4 Review

Influenza neuraminidase inhibitors: antiviral action and mechanisms of resistance

Journal

INFLUENZA AND OTHER RESPIRATORY VIRUSES
Volume 7, Issue -, Pages 25-36

Publisher

WILEY
DOI: 10.1111/irv.12047

Keywords

Influenza; M2 inhibitors; oseltamivir; peramivir; resistance; zanamivir

Funding

  1. CSIRO
  2. GlaxoSmithKline
  3. National Institutes of Health [NIAID RO1A1062721]
  4. NHMRC Australia [595625]
  5. MRC UK [77869]
  6. GSK

Ask authors/readers for more resources

Please cite this paper as: McKimm-Breschkin (2012) Influenza neuraminidase inhibitors: Antiviral action and mechanisms of resistance. Influenza and Other Respiratory Viruses 7(Suppl. 1), 2536. There are two major classes of antivirals available for the treatment and prevention of influenza, the M2 inhibitors and the neuraminidase inhibitors (NAIs). The M2 inhibitors are cheap, but they are only effective against influenza A viruses, and resistance arises rapidly. The current influenza A H3N2 and pandemic A(H1N1)pdm09 viruses are already resistant to the M2 inhibitors as are many H5N1 viruses. There are four NAIs licensed in some parts of the world, zanamivir, oseltamivir, peramivir, and a long-acting NAI, laninamivir. This review focuses on resistance to the NAIs. Because of differences in their chemistry and subtle differences in NA structures, resistance can be both NAI- and subtype specific. This results in different drug resistance profiles, for example, the H274Y mutation confers resistance to oseltamivir and peramivir, but not to zanamivir, and only in N1 NAs. Mutations at E119, D198, I222, R292, and N294 can also reduce NAI sensitivity. In the winter of 20072008, an oseltamivir-resistant seasonal influenza A(H1N1) strain with an H274Y mutation emerged in the northern hemisphere and spread rapidly around the world. In contrast to earlier evidence of such resistant viruses being unfit, this mutant virus remained fully transmissible and pathogenic and became the major seasonal A(H1N1) virus globally within a year. This resistant A(H1N1) virus was displaced by the sensitive A(H1N1)pdm09 virus. Approximately 0.51.0% of community A(H1N1)pdm09 isolates are currently resistant to oseltamivir. It is now apparent that variation in non-active site amino acids can affect the fitness of the enzyme and compensate for mutations that confer high-level oseltamivir resistance resulting in minimal impact on enzyme function.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available