4.5 Article

Gut Microbiota Affects Sensitivity to Acute DSS-induced Colitis Independently of Host Genotype

Journal

INFLAMMATORY BOWEL DISEASES
Volume 19, Issue 12, Pages 2560-2567

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/MIB.0b013e3182a8759a

Keywords

caspase; knockout; DSS; colitis; gut microbiota; DGGE; cohousing

Funding

  1. Ghent University (MRP)
  2. VIB
  3. FWO-Vlaanderen [G.0875.11, G.0973.11, G.0A45.12N]
  4. Federal Research Programme [IAP 7/32]
  5. Ghent University (GROUP-ID)
  6. Euregional PACTII
  7. Flemish Government [BOF09/01M00709]
  8. Special Research Fund of Ghent University (Belgium)
  9. Institute for the encouragement of Scientific Research and Innovation of Brussels (ISRIB)
  10. Odysseus programme of the FWO

Ask authors/readers for more resources

Caspase-deficient mice and wild-type (WT) mice show significant differences in their gut microbiota composition. These differences coincide with the observation that caspase-3-deficient mice carrying a natural caspase-11 mutation (Casp3/11(-/-)) are less sensitive to acute dextran sodium sulfate-induced colitis than WT mice. For these reasons, we investigated the role of the microbiota in the development of colitis by cohousing WT and Casp3/11(-/-) mice. Microbial community fingerprinting by denaturing gradient gel electrophoresis analysis revealed that the similarities in gut microbial composition of WT and Casp3/11(-/-) mice increased after cohousing. In the acute dextran sodium sulfate-induced colitis model, Casp3/11(-/-) mice that were cohoused with WT mice showed increased weight loss and disease activity scores and increased neutrophil infiltration and inflammatory cytokine levels in their colon tissue compared with Casp3/11(-/-) mice that were not cohoused with WT mice. Also, we demonstrate that only the microbiota of the Casp3/11(-/-) mice cohoused with WT mice showed an important increase in Prevotella species. In conclusion, our cohousing experiments revealed that the colitogenic activity of the WT microbiota is transferable to Casp3/11(-/-) mice and that Prevotella species are likely to be involved. By contrast, the relative protection of Casp3/11(-/-) mice against dextran sodium sulfate damage is not transferred to WT mice after cohousing. These results underscore the need for in-depth studies of the bilateral interaction of host genes and microbiota to gain insight into the mechanisms of disease pathogenesis. Our findings also have important implications for the experimental design of disease studies in genetically modified mice and conclusions drawn from them.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available