4.5 Article

Differential Induction of Inflammatory Cytokines and Reactive Oxygen Species in Murine Peritoneal Macrophages and Resident Fresh Bone Marrow Cells by Acute Staphylococcus aureus Infection: Contribution of Toll-Like Receptor 2 (TLR2)

Journal

INFLAMMATION
Volume 38, Issue 1, Pages 224-244

Publisher

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1007/s10753-014-0026-8

Keywords

antioxidant enzymes; bone marrow cells; intracellular survival; murine peritoneal macrophages; Staphylococcus aureus; Swiss albino mice; Toll-like receptor 2

Funding

  1. Department of Science and Technology (DST), Science and Engineering Research Board (SERB), Ministry of Science and Technology, Government of India, New Delhi, India [SR/SO/HS/0013/2012]
  2. Department of Science and Technology, Government of India [DST INSPIRE FELLOWSHIP/2013/1118]

Ask authors/readers for more resources

Among the known Toll-like receptors (TLRs), Toll-like receptor 2 (TLR2) is a key sensor for detecting Staphylococcus aureus invasion. But the function of TLR2 during S. aureus infection in different cell populations is unclear. Two different cell subtypes were chosen to study the interaction of S. aureus with TLR2 because macrophages are extremely different from one compartment to another and their capacity to respond to live bacteria or bacterial products differs from one site to another. The contribution of TLR2 to the host innate response against acute live S. aureus infection and heat-killed S. aureus (HKSA) using anti-TLR2 antibody in murine peritoneal macrophages and resident fresh bone marrow cells has been investigated here. TLR2 blocking before infection induces the release of interleukin (IL)-10 by macrophages thereby inhibiting excessive production of oxidants by activating antioxidant enzymes. TLR2-blocked peritoneal macrophages showed impaired release of tumor necrosis factor-alpha (TNF-alpha), interferon-gamma (IFN-gamma) and IL-6 in response to both live and heat-killed S. aureus infection except bone marrow cells. TLR2-mediated free radical production and killing of S. aureus were modulated by TLR2 blocking in peritoneal macrophages and resident bone marrow cells. This study supported that S. aureus persists in resident bone marrow cells in a state of quiescence.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available