4.4 Article

Development and application of a quantitative real-time PCR for the diagnosis of Surra in water buffaloes

Journal

INFECTION GENETICS AND EVOLUTION
Volume 9, Issue 4, Pages 449-452

Publisher

ELSEVIER
DOI: 10.1016/j.meegid.2009.01.006

Keywords

Tryponosoma evansi; Surra; Real-time PCR; Water buffalo; Philippines

Funding

  1. Japan Society for the Promotion of Science (JSPS)
  2. Global COE program for Zoonosis control at Hokkaido University

Ask authors/readers for more resources

Trypanosoma evansi (T. evansi) causes the disease called Surra in domestic animals, which is of great economic importance in South Asian countries. In order to improve the diagnosis of Surra, we endeavored to develop a real-time PCR assay for the detection and quantification of parasites in water buffaloes using specific primers for the T. evansi Rode Trypanozoon antigen type (RoTat) 1.2 Variable Surface Glycoprotein (VSG) gene, which is a known diverse DNA region in trypanosomes. The quantitative detection limit of the assay was 10(2) trypanosomes per mL of blood, and the identity of the amplicon was confirmed in all assays by melting curve analysis. To evaluate the clinical applicability of this procedure, detection and estimation of parasitemia in blood samples obtained from water buffaloes and horses were conducted. T evansi was detected in 17/607 (2.8%) blood samples, with parasitemia levels ranging from >10(1) to 10(7) parasites per mL of blood. Interestingly, out of the 17 PCR positive animals, 3 had previously received trypanocidal treatment and 1 had abortion history. These data indicate that real-time PCR for the estimation of putative parasitemia levels is a quantitatively and objectively applicable technique for clinical diagnosis of Surra, and could help to understand disease stage and risk of transmission of T. evansi. (C) 2009 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available