4.4 Article

Strain-Specific Regulatory Role of Eukaryote-Like Serine/Threonine Phosphatase in Pneumococcal Adherence

Journal

INFECTION AND IMMUNITY
Volume 80, Issue 4, Pages 1361-1372

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/IAI.06311-11

Keywords

-

Funding

  1. Bill and Melinda Gates Foundation

Ask authors/readers for more resources

Streptococcus pneumoniae exploits a battery of virulence factors to colonize the host. Although the eukaryote-like Ser/Thr kinase of S. pneumoniae (StkP) has been implicated in physiology and virulence, the role of its cotranscribing phosphatase (PhpP) has remained elusive. The construction of nonpolar markerless phpP knockout mutants (Delta phpP) in two pathogenic strains, D39 (type 2) and 6A-EF3114 (type 6A), indicated that PhpP is not indispensable for pneumococcal survival. Further, PhpP also participates in the regulation of cell wall biosynthesis/division, adherence, and biofilm formation in a strain-specific manner. Additionally, we provide hitherto-unknown in vitro and in vivo evidence of a physiologically relevant biochemical link between the StkP/PhpP-mediated cognate regulation and the two-component regulatory system TCS06 (RR06/HK06) that regulates the expression of the gene encoding an important pneumococcal surface adhesin, CbpA, which was found to be significantly upregulated in Delta phpP mutants. In particular, StkP (threonine)-phosphorylated RR06 bound to the cbpA promoter with high efficiency even in the absence of the HK06-responsive and catalytically active aspartate 51 residue. Together, our findings unravel the significant contributions of PhpP in pneumococcal physiology and adherence.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available