4.4 Article

A Theileria parva Isolate of Low Virulence Infects a Subpopulation of Lymphocytes

Journal

INFECTION AND IMMUNITY
Volume 80, Issue 3, Pages 1267-1273

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/IAI.05085-11

Keywords

-

Funding

  1. Directorate General for Development Co-Operation, Belgium through ITM
  2. Swiss National Science Foundation [3100A0-116653]

Ask authors/readers for more resources

Theileria parva is a tick-transmitted protozoan parasite that infects and transforms bovine lymphocytes. We have previously shown that Theileria parva Chitongo is an isolate with a lower virulence than that of T. parva Muguga. Lower virulence appeared to be correlated with a delayed onset of the logarithmic growth phase of T. parva Chitongo-transformed peripheral blood mononuclear cells after in vitro infection. In the current study, infection experiments with WC1(+) gamma delta T cells revealed that only T. parva Muguga could infect these cells and that no transformed cells could be obtained with T. parva Chitongo sporozoites. Subsequent analysis of the susceptibility of different cell lines and purified populations of lymphocytes to infection and transformation by both isolates showed that T. parva Muguga sporozoites could attach to and infect CD4(+), CD8(+), and WC1(+) T lymphocytes, but T. parva Chitongo sporozoites were observed to bind only to the CD8(+) T cell population. Flow cytometry analysis of established, transformed clones confirmed this bias in target cells. T. parva Muguga-transformed clones consisted of different cell surface phenotypes, suggesting that they were derived from either host CD4(+), CD8(+), or WC1(+) T cells. In contrast, all in vitro and in vivo T. parva Chitongo-transformed clones expressed CD8 but not CD4 or WC1, suggesting that the T. parva Chitongo-transformed target cells were exclusively infected CD8(+) lymphocytes. Thus, a role of cell tropism in virulence is likely. Since the adhesion molecule p67 is 100% identical between the two strains, a second, high-affinity adhesin that determines target cell specificity appears to exist.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available