4.4 Article

Infectivity Acts as In Vivo Selection for Maintenance of the Chlamydial Cryptic Plasmid

Journal

INFECTION AND IMMUNITY
Volume 79, Issue 1, Pages 98-107

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/IAI.01105-10

Keywords

-

Funding

  1. NIAID NIH HHS [R01 AI054624] Funding Source: Medline
  2. NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES [R01AI054624] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Chlamydia trachomatis contains a conserved similar to 7.5-kb plasmid. Loss of the plasmid results in reduced glycogen accumulation, failure to activate TLR2, and reduced infectivity. We hypothesized that reduced infectivity functions as a means of selection for plasmid maintenance. We directly examined the biological significance of the reduced infectivity associated with plasmid deficiency by determining the relative fitness of plasmid-deficient CM972 versus that of wild-type C. muridarum Nigg in mixed inocula in vitro and in vivo. C. muridarum Nigg rapidly out-competed its plasmid-cured derivative CM972 in vitro but was not competitive with CM3.1, a derivative of CM972 that has reverted to a normal infectivity phenotype. C. muridarum Nigg also effectively competed with CM972 during lower and upper genital tract infection in the mouse, demonstrating that strong selective pressure for plasmid maintenance occurs during infection. The severity of oviduct inflammation and dilatation resulting from these mixed infections correlated directly with the amount of C. muridarum Nigg in the initial inoculum, confirming the role of the plasmid in virulence. Genetic characterization of CM972 and CM3.1 revealed no additional mutations (other than loss of the plasmid) to account for the reduced infectivity of CM972 and detected a single base substitution in TC_0236 in CM3.1 that may be responsible for its restored infectivity. These data demonstrate that a chlamydial strain that differs genetically from its wild-type parent only with respect to the lack of the chlamydial plasmid is unable to compete in vitro and in vivo, likely explaining the rarity of plasmid-deficient isolates in nature.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available