4.4 Article

Indoleamine 2,3-Dioxygenase 1 Is a Lung-Specific Innate Immune Defense Mechanism That Inhibits Growth of Francisella tularensis Tryptophan Auxotrophs

Journal

INFECTION AND IMMUNITY
Volume 78, Issue 6, Pages 2723-2733

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/IAI.00008-10

Keywords

-

Funding

  1. Agency for Science, Technology and Research, Singapore
  2. NIH-NIAID [AI063302, AI065359]

Ask authors/readers for more resources

Upon microbial challenge, organs at various anatomic sites of the body employ different innate immune mechanisms to defend against potential infections. Accordingly, microbial pathogens evolved to subvert these organ-specific host immune mechanisms to survive and grow in infected organs. Francisella tularensis is a bacterium capable of infecting multiple organs and thus encounters a myriad of organ-specific defense mechanisms. This suggests that F. tularensis may possess specific factors that aid in evasion of these innate immune defenses. We carried out a microarray-based, negative-selection screen in an intranasal model of Francisella novicida infection to identify Francisella genes that contribute to bacterial growth specifically in the lungs of mice. Genes in the bacterial tryptophan biosynthetic pathway were identified as being important for F. novicida growth specifically in the lungs. In addition, a host tryptophan-catabolizing enzyme, indoleamine 2,3-dioxygenase 1 (IDO1), is induced specifically in the lungs of mice infected with F. novicida or Streptococcus pneumoniae. Furthermore, the attenuation of F. novicida tryptophan mutant bacteria was rescued in the lungs of IDO1(-/-) mice. IDO1 is a lung-specific innate immune mechanism that controls pulmonary Francisella infections.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available