4.4 Article

Modulation of Cell Wall Structure and Antimicrobial Susceptibility by a Staphylococcus aureus Eukaryote-Like Serine/Threonine Kinase and Phosphatase

Journal

INFECTION AND IMMUNITY
Volume 77, Issue 4, Pages 1406-1416

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/IAI.01499-08

Keywords

-

Funding

  1. National Institutes of Health [T32GM068412]
  2. Systems in Integrative Biology fellowship administered through the Integrative Biomedical Graduate Program [T32AI065411]
  3. NRSA training grant administered by the Center for Microbial Interface Biology
  4. NIH [AI064912]
  5. OSUMC

Ask authors/readers for more resources

It is well established that prokaryotes and eukaryotes alike utilize phosphotransfer to regulate cellular functions. One method by which this occurs is via eukaryote-like serine/threonine kinase (ESTK)- and phosphatase (ESTP)-regulated pathways. The role of these enzymes in Staphylococcus aureus has not yet been examined. This resilient organism is a common cause of hospital-acquired and community-associated infections, infecting immunocompromised and immunocompetent hosts alike. In this study, we have characterized a major functional ESTK (STK) and ESTP (STP) in S. aureus and found them to be critical modulators of cell wall structure and susceptibility to cell wall-acting beta-lactam antibiotics. By utilizing gene knockout strategies, we created S. aureus N315 mutants lacking STP and/or STK. The strain lacking both STP and STK displayed notable cell division defects, including multiple and incomplete septa, bulging, and irregular cell size, as observed by transmission electron microscopy. Mutants lacking STP alone displayed thickened cell walls and increased resistance to the peptidoglycan-targeting glycylglycine endopeptidase lysostaphin, compared to the wild type. Additionally, mutant strains lacking STK or both STK and STP displayed increased sensitivity to cell wall-acting cephalosporin and carbapenem antibiotics. Together, these results indicate that S. aureus STK- and STP-mediated reversible phosphorylation reactions play a critical role in proper cell wall architecture, and thus the modulation of antimicrobial resistance, in S. aureus.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available