4.4 Article

Caspase-1 Mediates Resistance in Murine Melioidosis

Journal

INFECTION AND IMMUNITY
Volume 77, Issue 4, Pages 1589-1595

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/IAI.01257-08

Keywords

-

Funding

  1. National University Singapore
  2. Office of Life Sciences [R-183-000-602-712]
  3. Royal Golden Jubilee Ph. D. Program under the Thailand Research Fund
  4. Deutsche Forschungsgemeinschaft

Ask authors/readers for more resources

The gram-negative rod Burkholderia pseudomallei is the causative agent of melioidosis, a potentially fatal disease which is endemic in tropical and subtropical areas. The bacterium multiplies intracellularly within the cytosol, induces the formation of actin tails, and can spread directly from cell to cell. Recently, it has been shown that B. pseudomallei can induce caspase-1-dependent cell death in macrophages. The aim of the present study was to further elucidate the role of caspase-1 during B. pseudomallei infection. In vivo experiments with caspase-1(-/-) mice revealed a high susceptibility to B. pseudomallei challenge. This phenotype was associated with a significantly higher bacterial burden 2 days after infection and decreased gamma interferon (IFN-gamma) and interleukin-18 cytokine levels 24 h after infection compared to control animals. caspase-1(-/-) bone marrow-derived macrophages (BMM)exhibited strong caspase-3 expression and reduced cell damage compared to wild-type (WT) cells during early B. pseudomallei infection, indicating classical apoptosis, whereas WT BMM showed signs of rapid caspase-1-dependent cell death. Moreover, we found that caspase-1(-/-) BMM had a strongly increased bacterial burden compared to WT cells 3 h after infection under conditions where no difference in cell death could be observed between both cell populations at this time point. We therefore suggest that caspase-1-dependent rapid cell death might contribute to resistance by reducing the intracellular niche for B. pseudomallei, but, in addition, caspase-1 might also have a role in controlling intracellular replication of B. pseudomallei in macrophages. Moreover, caspase-1-dependent IFN-gamma production is likely to contribute to resistance in murine melioidosis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available