4.4 Article

Cryptococcus neoformans enters the endolysosomal pathway of dendritic cells and is killed by lysosomal components

Journal

INFECTION AND IMMUNITY
Volume 76, Issue 10, Pages 4764-4771

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/IAI.00660-08

Keywords

-

Funding

  1. National Institutes of Health [RO1 AI25780, RO1 AI066087]

Ask authors/readers for more resources

Cryptococcus neoformans is an opportunistic fungal pathogen that primarily causes disease in immunocompromised individuals. Dendritic cells (DCs) can phagocytose C. neoformans, present cryptococcal antigen, and kill C. neoformans. However, early events following C. neoformans phagocytosis by DCs are not well defined. We hypothesized that C. neoformans traffics to the endosome and the lysosome following phagocytosis by DCs and is eventually killed in the lysosome. Murine bone marrow-derived DCs (BMDCs) or human monocyte-derived DCs (HDCs) were incubated with live, encapsulated C. neoformans yeast cells and opsonizing antibody. Following incubation, DCs were intracellularly stained with antibodies against EEA1 (endosome) and LAMP-1 (late endosome/lysosome). As assessed by confocal microscopy, C. neoformans trafficked to endosomal compartments of DCs within 10 min and to lysosomal compartments within 30 min postincubation. For HDCs, the studies were repeated using complement-sufficient autologous plasma for the opsonization of C. neoformans. These data showed results similar to those for antibody opsonization, with C. neoformans localized to endosomes within 20 min and to lysosomes within 60 min postincubation. Additionally, the results of live real-time imaging studies demonstrated that C. neoformans entered lysosomal compartments within 20 min following the initiation of phagocytosis. The results of scanning and transmission electron microscopy demonstrated conventional zipper phagocytosis of C. neoformans by DCs. Finally, lysosomal extracts were purified from BMDCs and incubated with C. neoformans to determine their potential to kill C. neoformans. The extracts killed C. neoformans in a dose-dependent manner. This study shows that C. neoformans enters into endosomal and lysosomal pathways following DC phagocytosis and can be killed by lysosomal components.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available