4.6 Article

Optimal Process Design of Commercial-Scale Amine-Based CO2 Capture Plants

Journal

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
Volume 53, Issue 38, Pages 14815-14829

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ie5023767

Keywords

-

Funding

  1. Commonwealth Scholarship Commission in the U.K.
  2. EPSRC [EP/K000446/1] Funding Source: UKRI
  3. Engineering and Physical Sciences Research Council [EP/K000446/1] Funding Source: researchfish

Ask authors/readers for more resources

Reactive absorption with an aqueous solution of amines in an absorber/stripper loop is the most mature technology for postcombustion CO2 capture (PCC). However, most of the commercial-scale CO2 capture plant designs that have been reported in the open literature are based on values of CO2 loadings and/or solvent circulation rates without an openly available techno-economic consideration. As a consequence, most of the reported designs may be suboptimal, and some of them appear to be unrealistic from practical and operational viewpoints. In this paper, four monoethanolamine (MEA) based CO2 capture plants have been optimally designed for both gas-fired and coal-fired power plants based on process and economic analyses. We have found that the optimum lean CO2 loading for MEA-based CO2 capture plants that can service commercial-scale power plants, whether natural-gas-fired or coal-fired, is about 0.2 mol/mol for absorber and stripper columns packed with Sulzer Mellapak 250Y structured packing. Also, the optimum liquid/gas ratio for a natural gas combined cycle (NGCC) power plant with a flue gas composition of approximately 4 mol % CO2 is about 0.96, while the optimum liquid/gas ratio for a pulverized-coal-fired (PC) power plant can range from 2.68 to 2.93 for a flue gas having a CO2 composition that ranges from 12.38 to 13.50 mol %.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available