4.6 Article

Chemical Modifications in Styrene-Butadiene Rubber after Microwave Devulcanization

Journal

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
Volume 51, Issue 10, Pages 3975-3980

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ie202077g

Keywords

-

Funding

  1. CAPES
  2. FAPESP [Proc. 2007/07676-9]
  3. CNPq [Proc. 471218/2007-3]

Ask authors/readers for more resources

Microwave devulcanization has been studied as a method for elastomer recycling, which is based on the conversion of the reticulated and infusible structure of thermosetting rubbers in free polymeric chains able to be remolded by thermomechanical processing in recycling operations for the manufacture of other products. Elastomeric wastes are often irregularly discarded in nature, producing serious environmental damage, and their mechanical recycling is still considered a challenge. Thus, the development of alternatives for elastomer recycling is directly related to the actions of sustainable development and economic benefits to companies that pay to discard their wastes. The aim of this work is to evaluate the chemical modifications occurring in styrene butadiene rubber (SBR) after microwave devulcanization. Compounds of SBR were vulcanized in the presence of vulcanization agents and variable amounts of carbon black, and then the rubbers were milled and submitted to microwave treatment. Only the SBR with high carbon black content shows some portion of devulcanized material. However, the rubber with lower content of carbon black which was devulcanized by microwave radiation shows an increase in cross-link density. The microwave treatment also causes cross-link breaks mainly in polysulfidic bonds as well as decomposition of chemical groups containing sulfur attached to the chemical structure of SBR, while. the chemical bonds of higher energy such as monosulfidic bonds remain preserved. The improvement of the microwave method for rubber devulcanization represents a way for viable recycling of thermosetting rubbers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available