4.6 Article

Dynamic Simulation of the Packing of Ellipsoidal Particles

Journal

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
Volume 50, Issue 16, Pages 9787-9798

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ie200862n

Keywords

-

Funding

  1. Australian Research Council (ARC)
  2. Blue Scope Steel Research

Ask authors/readers for more resources

This paper presents a numerical study of the packing of nonspherical particles by the use of the discrete element method. The shapes considered are oblate and prolate spheroids, with the aspect ratio varying from 0.1 to 7.0. It is shown that the predicted relationship between packing fraction and aspect ratio is consistent with those reported in the literature. Ellipsoids can pack more densely than spheres. The maximum packing fraction occurs at an aspect ratio of 0.6 for oblate spheroids, and 1.80 for prolate spheroids. The packing characteristics with aspect ratio are further analyzed in terms of structural parameters such as coordination number and radial distribution function. It is shown that ellipsoids with small or large aspect ratios tend to give a locally ordered structure. The results demonstrate that DEM provides a useful method to investigate the packing dynamics of ellipsoidal particles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available