4.6 Article

Extension of COSMO-SAC Solvation Model for Electrolytes

Journal

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
Volume 50, Issue 1, Pages 176-187

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ie100689g

Keywords

-

Ask authors/readers for more resources

COSMO-based activity coefficient models such as COSMO-SAC (conductor-like screening model-segment activity coefficient) have been shown to be relatively successful predictive models for molecular systems. [As cited in Lin, S. T.; Sandler, S. I. Ind. Eng. Chem. Res. 2002, 41, 899-913 and Mullins, E. et al. Ind. Eng. Chem, Res. 2006, 45, 4389-4415.] In this study, we present an extension of COSMO-SAC to electrolytes (eCOSMO-SAC) that combines the COSMO-SAC term for short-range molecule-molecule, molecule-ion, and ion-ion interactions with the extended symmetric Pitzer-Debye-Htickel term for long-range ion-ion interactions. [As cited in Song, Y.; Chen, C.-C. Ind. Eng. Chem. Res. 2009, 48, 7788-7797.] The extension recognizes that like-ion repulsion and local electroneutrality govern the surface segment contacts, and it introduces a dual sigma profile concept for electrolyte systems. [Chen, C.-C. et al. AIChE J. 1982, 28, 588-596.] While the model formulation and parameters remain to be optimized with a greater selection of electrolytes, the eCOSMO-SAC predictions for a few representative electrolyte systems show trends that are in qualitative agreement with experimental data and those generated from the eNRTL model (as mentioned in the Song et al. work previously noted) and demonstrate essential characteristics that are consistent with the general behavior of electrolyte systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available