4.6 Article

Removal of Carbon Dioxide by Absorption in Microporous Tube-in-Tube Microchannel Reactor

Journal

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
Volume 50, Issue 10, Pages 6369-6374

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ie1024886

Keywords

-

Funding

  1. National 973 Program of China [2009CB219903]
  2. National Natural Science Foundation of China [20821004]
  3. National 863 Program of China [2007AA030207, 2009AA033301]

Ask authors/readers for more resources

In this article, preliminary experimental results are presented on the absorption of carbon dioxide (CO2) in a novel high-throughput microporous tube-in-tube microchannel reactor (MTMCR), with an aqueous solution of monoethanolamine (MEA) and a mixture of CO2/N-2 as the working fluids. The effects of design and operating parameters on the CO2 removal efficiency were investigated. The absorbent concentration was given the priority as a key factor for consideration, with the result that the CO2 removal efficiency increased with increasing concentration an and could reach 90% or even higher at a high throughput of 440 L/h for gas with an MEA concentration of 30 wt %. With a decrease of the superficial gas velocity or an increase of the superficial liquid velocity, the CO2 removal efficiency increased. Increasing the absorbent temperature yielded better absorption performance. Reducing the most important structural parameters of the MTMCR, such as the micropore size and the annular channel width, led to a higher mass-transfer rate and was beneficial for CO2 removal. This work also investigated the characteristics of the pressure drop of two-phase flows through the MTMCR. The results obtained imply a great potential for MTMCRs applied to the separation of the greenhouse gas CO2 from the exhausted gases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available