4.6 Article

Continuous-Molecular Targeting for Integrated Solvent and Process Design

Journal

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
Volume 49, Issue 6, Pages 2834-2840

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ie901281w

Keywords

-

Ask authors/readers for more resources

An integrated design of processes and solvents is a prerequisite for achieving truly optimized solvent-based processes. However, solving the full integrated problem in a single optimization is usually not possible even for a predefined process topology due to the required discrete choices between molecular structures. Current approaches therefore mostly decompose the integrated problem into a process design and a molecular-design subproblem. The interaction between these subproblems is usually limited in practice, and a direct link between process performance and molecular characteristics of the solvent is not achieved. In this work, a novel methodology for the integrated process and molecular design problem is suggested where the discrete molecular decisions in the integrated design problem are circumvented by defining a hypothetical molecule. The approach is building upon a molecular-based thermodynamic model, where the parameters representing a molecule are treated as continuous. These parameters are optimized together with other process parameters, leading to an ideal hypothetical target molecule (represented by a set of parameters) and a corresponding optimized process. Only in a subsequent step, the parameters of the thermodynamic model representing the hypothetical molecule are mapped onto an existing optimal solvent. The method is illustrated for the design of solvents for carbon dioxide capture where the benefits of the integrated design approach are demonstrated. The perturbed-chain-polar-statistical-associating-fluid theory (PCP-SAFT) equation of state is used as a thermodynamic model. The framework introduced is generic in nature and thus applicable beyond the study of solvents to the integrated design of materials and processes in general.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available