4.6 Article

Efficient Methodologies for Processing of Fluids by Thermal Convection within Porous Square Cavities

Journal

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
Volume 49, Issue 20, Pages 9771-9788

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ie100569w

Keywords

-

Ask authors/readers for more resources

Effective use of thermal energy is the key for the energy-efficient processing of materials. A proper understanding of heat flow would be very useful in designing the systems of high energy efficiency with a minimal waste of precious energy resources. In the current study, a distributed heating methodology is proposed for the efficient thermal processing of materials. A detailed investigation on the processing of various fluids of industrial importance (with a Prandtl number of Pr=0.015, 0.7, 10, and 1000) in differentially and discretely heated porous square cavities is presented. Analysis of laminar convective heat flow within a range of Darcy number, Da = 10(-6)-10(-3) and Rayleigh number, Ra = 10(3)-10(6) has been carried out, based on a heatline visualization approach. The effect of Da and the role of distributed heating in enhancing the convection in the cavities is illustrated via heatline distributions, which represent the paths of the heat flow, the magnitude of heat flow, and zones of high heat transfer. It is observed that distributed heating plays an important role in enhancement of thermal mixing and temperature uniformity. Furthermore, the effect of Da for various Pr values on the variation of local Nusselt number (Nu) is analyzed, based on heatline distributions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available