4.6 Review

Review of fluid slip over superhydrophobic surfaces and its dependence on the contact angle

Journal

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
Volume 47, Issue 8, Pages 2455-2477

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ie0712941

Keywords

-

Ask authors/readers for more resources

A review of the characteristics of hydrophobicity is presented, with the goal of investigating the relationship, if any, between the contact angle (a macroscopically observed property) and the slip length (a microscopic phenomenon). An analysis of simulations, and of their evolution through the years, sheds light on some inherent differences between contact angle and slip length behavior on flat and patterned surfaces. Previous studies lead to the conclusion that epitaxial layering of fluid near the solid is intricately related to the magnitude of fluid slip. Epitaxial layer data help to explain unexpected slip length behavior in relation to the contact angle, and reported inconsistencies between slip length experiments and simulations. Therefore, it seems that solids that can produce favorable epitaxial layering of the fluid will cause larger slip. Dimensional analysis is used to elucidate the contact angle-slip length relationship. Results can be applied to the development of artificial supersolvophobic surfaces that would exhibit predictable fluid slip with important practical applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available