4.6 Article

Isogeometric analysis: An overview and computer implementation aspects

Journal

MATHEMATICS AND COMPUTERS IN SIMULATION
Volume 117, Issue -, Pages 89-116

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.matcom.2015.05.008

Keywords

Isogeometric analysis; NURBS; Finite elements; CAD; Isogeometric collocation

Funding

  1. EPSRC [EP/G042705/1]
  2. European Research Council [279578]
  3. [289361]
  4. EPSRC [EP/G042705/1, EP/G069352/1] Funding Source: UKRI
  5. Engineering and Physical Sciences Research Council [EP/G069352/1, EP/G042705/1] Funding Source: researchfish
  6. European Research Council (ERC) [279578] Funding Source: European Research Council (ERC)

Ask authors/readers for more resources

Isogeometric analysis (IGA) represents a recently developed technology in computational mechanics that offers the possibility of integrating methods for analysis and Computer Aided Design (CAD) into a single, unified process. The implications to practical engineering design scenarios are profound, since the time taken from design to analysis is greatly reduced, leading to dramatic gains in efficiency. In this manuscript, through a self-contained Matlab (R) implementation, we present an introduction to IGA applied to simple analysis problems and the related computer implementation aspects. Furthermore, implementation of the extended IGA which incorporates enrichment functions through the partition of unity method (PUM) is also presented, where several examples for both two-dimensional and three-dimensional fracture are illustrated. We also describe the use of IGA in the context of strong-form (collocation) formulations, which has been an area of research interest due to the potential for significant efficiency gains offered by these methods. The code which accompanies the present paper can be applied to one, two and three-dimensional problems for linear elasticity, linear elastic fracture mechanics, structural mechanics (beams/plates/shells including large displacements and rotations) and Poisson problems with or without enrichment. The Bezier extraction concept that allows the FE analysis to be performed efficiently on T-spline geometries is also incorporated. The article includes a summary of recent trends and developments within the field of IGA. (C) 2015 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available