4.3 Article

Cell aggregation on agar as an indicator for cell-matrix adhesion: effects of opioids

Journal

IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL
Volume 45, Issue 8, Pages 473-482

Publisher

SPRINGER
DOI: 10.1007/s11626-009-9180-y

Keywords

Aggregation; Agar; Cell-cell adhesion; Cell-substrate adhesion; Opioids

Funding

  1. Scientific Research (FWO-Vlaanderen, Brussels, Belgium)

Ask authors/readers for more resources

The slow aggregation assay is generally used to study the functionality of cell-cell adhesion complexes. Single cells are seeded on a semisolid agar substrate in a 96-well plate and the cells spontaneously aggregate. We used HEK FLAG-MOP cells that stably overexpress the mu opioid receptor and the mu-opioid-receptor-selective agonists DAMGO and morphine to study whether other factors than functionality of cell-cell adhesions complexes can contribute to changes in the pattern of slow aggregation on agar. HEK FLAG-MOP cells formed small compact aggregates. In the presence of DAMGO and morphine, larger and fewer aggregates were formed in comparison to the vehicle control. These aggregates were localized in the center of the agar surface, whereas in the vehicle control they were dispersed over the substrate. However, in suspension culture on a Gyrotory shaker, no stimulation of aggregation was observed by DAMGO and morphine, showing that opioids do not affect affinity. A dissociation experiment revealed that HEK FLAG-MOP aggregates formed in the absence or presence of opioids are resistant to de-adhesion. We demonstrated that the larger aggregates are neither the result of cell growth stimulation by DAMGO and morphine. Since manipulations of the substrate such as increasing the agar concentration or mixing agar with agarose induced the same changes in the pattern of slow aggregation as treatment with opioids, we suggest that cell-substrate adhesion may be involved in opioid-stimulated aggregation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available