4.3 Article

Phenotype and functions of conventional dendritic cells are not compromised in aged mice

Journal

IMMUNOLOGY AND CELL BIOLOGY
Volume 90, Issue 7, Pages 722-732

Publisher

WILEY
DOI: 10.1038/icb.2011.104

Keywords

aging; co-stimulatory molecules; dendritic cells; innate immunity

Funding

  1. National Institutes of Health, National Health and Medical Research Council [512266, 570742]
  2. New South Wales government

Ask authors/readers for more resources

Aging has profound effects on the immune system, including thymic involution, reduced diversity of the T cell receptor repertoire, reduced effector T cell and B cell function and chronic increase of proinflammatory cytokine production by innate immune cells. The precise effects of aging on conventional dendritic cells (cDC), the main antigen presenting cells of the immune system, however, are not well understood. We found that in aged mice the number of cDC in the spleen and lymph nodes remained stable, whereas the number of cDC in the lungs increased with age. Whereas cDC in mice showed similar cycling kinetics in all organs tested, cDC reconstitution by aged bone marrow precursors was relatively higher than that of their young counterparts. With the exception of CD86, young and aged cDC did not differ in their expression of co-stimulatory molecules at steady state. Most toll-like receptor (TLR) ligands induced comparable upregulation of co-stimulatory molecules CD40, CD86 and B7H1 on young and aged cDC, whereas TLR2 and TLR5 stimulation resulted in reduced upregulation of CD80 and CD86 on aged cDC in vitro. In vivo, influenza infection-induced upregulation of CD86, but not other co-stimulatory molecules, was lower in aged DC. Young and aged DC were equally capable of direct and cross presentation of antigens in vitro. Transcriptome analysis did not reveal any significant difference between young and aged cDC. These data show that unlike T and B cells, the maintenance of cDC throughout the life of a healthy animal is relatively robust during the aging process. Immunology and Cell Biology (2012) 90, 722-732; doi:10.1038/icb.2011.104; published online 10 January 2012

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available