4.2 Article

Defects in CD54 and CD86 Up-regulation by Plasmacytoid Dendritic Cells During Pregnancy

Journal

IMMUNOLOGICAL INVESTIGATIONS
Volume 41, Issue 5, Pages 497-506

Publisher

TAYLOR & FRANCIS INC
DOI: 10.3109/08820139.2012.682243

Keywords

Plasmacytoid dendritic cell; Pregnancy; CD54; CD86; Interferon-alpha; Progesterone

Categories

Funding

  1. Fondation Charles-Bruneau
  2. Fonds de Recherche en Sante du Quebec

Ask authors/readers for more resources

Physiological modulation of the immune system is required for foetal tolerance during pregnancy. However, this immune regulation might lead to impaired self-defence against pathogens. Indeed, pregnant women are more susceptible to newly encountered viruses comparing to non-pregnant women, as exemplified by the prevalence of severe complications in pregnant women infected with the pandemic influenza virus in 2009. Plasmacytoid dendritic cells (pDCs) are specialized dendritic cells that recognise viral antigens and initiate both innate and adaptive immune responses. We therefore sought to determine whether the number and/or the functions of peripheral blood pDCs are regulated during pregnancy. pDC maturation and interferon (IFN)-alpha production were analysed in response to Toll-like receptor (TLR) stimulation of peripheral blood mononuclear cells from pregnant and non-pregnant women. Our results reveal that pDC frequency is slightly decreased, while the IFN-alpha production in response to TLR stimulation increases during pregnancy. Interestingly, the up-regulation of the co-stimulatory receptors CD54 (ICAM1) and CD86 is significantly decreased in pDCs from pregnant women as compared to controls, suggesting a possible impact on T-cell responses. In conclusion, we propose that the modulation of CD54 and CD86 expression on peripheral blood pDCs during pregnancy might decrease the initiation of adaptive antiviral immune responses.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available