4.5 Article

On the approximation and efficient evaluation of integral terms in PDE models of cell adhesion

Journal

IMA JOURNAL OF NUMERICAL ANALYSIS
Volume 30, Issue 1, Pages 173-194

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/imanum/drp027

Keywords

nonlocal term; cell adhesion; circulant matrix; fast Fourier transform; method of lines

Ask authors/readers for more resources

Recently, a nonlocal term has been introduced in time-dependent partial differential equation (PDE) models of cell migration in tissue. This term is used to model adhesive effects between cells and also between cells and the extracellular matrix. We assume periodic boundary conditions for the model and that the PDE system is discretized following the method of lines and using a finite-volume scheme on a uniform grid in space. For high-resolution simulations of the PDE system an efficient evaluation of the approximation of the nonlocal term is crucial. For one and two spatial dimensions we develop suitable approximations of the nonlocal term and evaluate these using fast Fourier transform (FFT) techniques. Comprehensive numerical tests show the accuracy and efficiency of our approach. We also demonstrate the impact of the proposed scheme for the treatment of the nonlocal term on simulation times for a differential cell adhesion model. We discuss extensions and applicability of our work to systems with nonperiodic boundary conditions and for other nonlocal PDE models from mathematical biology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available