4.3 Article

Introduction to rodent cardiac imaging

Journal

ILAR JOURNAL
Volume 49, Issue 1, Pages 27-34

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/ilar.49.1.27

Keywords

animal preparation; cardiac imaging; gating; microcomputed tomography; magnetic resonance; rodent; ultrasound

Funding

  1. Intramural NIH HHS Funding Source: Medline

Ask authors/readers for more resources

Imaging is a noninvasive complement to traditional methods (such as histology) in rodent cardiac studies. Assessments of structure and function are possible with ultrasound, microcomputed tomography (microCT), and magnetic resonance (MR) imaging. Cardiac imaging in the rodent poses a challenge because of the size of the animal and its rapid heart rate. Each aspect in the process of rodent cardiac imaging-animal preparation, choice of anesthetic, selection of gating method, image acquisition, and image interpretation and measurement-requires careful consideration to optimize image quality and to ensure accurate and reproducible data collection. Factors in animal preparation that can affect cardiac imaging are the choice of anesthesia regime (injected or inhaled), intubated or free-breathing animals, physiological monitoring (ECG, respiration, and temperature), and animal restraint. Each will vary depending on the method of imaging and the length of the study. Gating strategies, prospective or retrospective, reduce physiological motion artifacts and isolate specific time points in the cardiac cycle (i.e., end-diastole and end-systole) where measurements are taken. This article includes a simple explanation of the physics of ultrasound, microCT, and MR to describe how images are generated. Subsequent sections provide reviews of animal preparation, image acquisition, and measurement techniques in each modality specific to assessing cardiac functions such as ejection fraction, fractional shortening, stroke volume, cardiac output, and left ventricular mass. The discussion also includes the advantages and disadvantages of the different imaging modalities. With the use of ultrasound, microCT, and MR, it is possible to create 2-, 3-, and 4-dimensional views to characterize the structure and function of the rodent heart.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available