4.4 Article

Phase tracking and restoration of circadian rhythms by model-based optimal control

Journal

IET SYSTEMS BIOLOGY
Volume 2, Issue 1, Pages 16-23

Publisher

INST ENGINEERING TECHNOLOGY-IET
DOI: 10.1049/iet-syb:20070016

Keywords

-

Ask authors/readers for more resources

Periodic cellular processes and especially circadian rhythms governed by the oscillating expression of a set of genes based on feedback regulation by their products have become an important issue in biology and medicine. The central circadian clock is an autonomous biochemical oscillator with a period close to 24 h. Research in chronobiology demonstrated that light stimuli can be used to delay or advance the phase of the oscillator, allowing it to influence the underlying physiological processes. Phase shifting and restoration of altered rhythms can generally be viewed as open-loop control problems that may be used for therapeutic purposes in diseases. A circadian oscillator model of the central clock mechanism is studied for the fruit fly Drosophila and show how model-based mixed-integer optimal control allows for the design of chronomodulated pulse-stimuli schemes achieving circadian rhythm restoration in mutants and optimal phase synchronisation between the clock and its environment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available