4.7 Article

An Importance Sampling Method for TDOA-Based Source Localization

Journal

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS
Volume 10, Issue 5, Pages 1560-1568

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TWC.2011.030311.101011

Keywords

Maximum likelihood (ML) estimation; localization; time-difference-of-arrival (TDOA); importance sampling

Ask authors/readers for more resources

We consider the source localization problem using time-difference-of-arrival (TDOA) measurements in sensor networks. The maximum likelihood (ML) estimation of the source location can be cast as a nonlinear/nonconvex optimization problem, and its global solution is hardly obtained. In this paper, we resort to the Monte Carlo importance sampling (MCIS) technique to find an approximate global solution to this problem. To obtain an efficient importance function that is used in the technique, we construct a Gaussian distribution and choose its probability density function (pdf) as the importance function. In this process, an initial estimate of the source location is required. We reformulate the problem as a nonlinear robust least squares (LS) problem, and relax it as a second-order cone programming (SOCP), the solution of which is used as the initial estimate. Simulation results show that the proposed method can achieve the Cramer-Rao bound (CRB) accuracy and outperforms several existing methods.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available