4.5 Article

Visual Vocabulary Processor Based on Binary Tree Architecture for Real-Time Object Recognition in Full-HD Resolution

Journal

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TVLSI.2011.2170203

Keywords

Computer vision; digital circuit; hardware architecture; object recognition; system-on-a-chip (SoC)

Funding

  1. National Science Council (NSC), Taiwan [NSC100-2917-I-564-026]

Ask authors/readers for more resources

Feature matching is an indispensable process for object recognition, which is an important issue for wearable devices with video analysis functionalities. To implement a low-power SoC for object recognition, the proposed visual vocabulary processor (VVP) is employed to accelerate the speed of feature matching. The VVP can transform hundreds of 128-D SIFT vectors into a 64-D histogram for object matching by using the binary-tree-based architecture, and 16 calculators for the computations of the Euclidean distances are designed for each of the two processors in each level. A total of 126 visual words can be saved in the six-level hierarchical memory, which instantly offers the data required for the matching process, and more than 5 times of bandwidth can be saved compared with the non-binary-tree-based architecture. As a part of the recognition SoC, the VVP is implemented with the 65-nm CMOS technology, and the experimental results show that the gate count and the average power consumption are 280 K and 5.6 mW, respectively.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available