4.7 Article

Multiantenna-Assisted Spectrum Sensing for Cognitive Radio

Journal

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY
Volume 59, Issue 4, Pages 1791-1800

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TVT.2009.2037912

Keywords

Cognitive radio (CR); generalized likelihood ratio test (GLRT); spectrum sensing

Funding

  1. National Science Foundation [CCF-0514938, ECCS-0901066]
  2. Air Force Office of Scientific Research [FA9550-09-1-0310]
  3. Directorate For Engineering
  4. Div Of Electrical, Commun & Cyber Sys [0901066] Funding Source: National Science Foundation

Ask authors/readers for more resources

In this paper, we consider the problem of detecting a primary user in a cognitive radio network by employing multiple antennas at the cognitive receiver. In vehicular applications, cognitive radios typically transit regions with differing densities of primary users. Therefore, speed of detection is key, and so, detection based on a small number of samples is particularly advantageous for vehicular applications. Assuming no prior knowledge of the primary user's signaling scheme, the channels between the primary user and the cognitive user, and the variance of the noise seen at the cognitive user, a generalized likelihood ratio test (GLRT) is developed to detect the presence/absence of the primary user. Asymptotic performance analysis for the proposed GLRT is also presented. A performance comparison between the proposed GLRT and other existing methods, such as the energy detector (ED) and several eigenvalue-based methods under the condition of unknown or inaccurately known noise variance, is provided. Our results show that the proposed GLRT exhibits better performance than other existing techniques, particularly when the number of samples is small, which is particularly critical in vehicular applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available