4.7 Article

Low-Cost Three-Dimensional Navigation Solution for RISS/GPS Integration Using Mixture Particle Filter

Journal

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY
Volume 59, Issue 2, Pages 599-615

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TVT.2009.2034267

Keywords

Global Positioning System (GPS); inertial navigation system (INS)/GPS integration; inertial sensors; Kalman filter (KF); land vehicle navigation; particle filter (PF)

Funding

  1. Natural Sciences and Engineering Research Council
  2. Geomatics for Informed Decision Network Centers of Excellence
  3. Defense Research and Development Canada Ottawa
  4. Canada Foundation for Innovation
  5. Ontario Innovation Trust
  6. Royal Military College of Canada

Ask authors/readers for more resources

Recent technological advances in both GPS and low-cost microelectromechanical-system (MEMS)-based inertial sensors have enabled the monitoring of the location of moving platforms for numerous positioning and navigation (POS/NAV) applications. GPS is presently widely used in land vehicles. However, in some environments, the GPS signal may suffer from signal blockage and multipath effects that deteriorate the positioning accuracy. When miniaturized inside any moving platforms, the MEMS-based inertial navigation system (INS) can be integrated with GPS and enhance the performance in denied GPS environments (like in urban canyons). Targeting a low-cost navigation solution for land vehicles, this paper uses a reduced inertial sensor system (RISS) with MEMS-based inertial sensors. In this paper, the RISS consists of one single-axis gyroscope and a two-axis accelerometer used together with the vehicle's odometer, and the whole system is integrated with GPS to obtain a 3-D navigation solution. The traditional technique for this integration problem is Kalman filtering (KF). Due to the inherent errors of MEMS inertial sensors and the relatively high noise levels associated with their measurements, KF has limited capabilities in providing accurate positioning. Particle filtering (PF) was recently suggested as a nonlinear filtering technique to accommodate arbitrary inertial sensor characteristics, motion dynamics, and noise distributions. An enhanced version of PF is utilized in this paper and is called Mixture PF. The performance of the proposed 3-D navigation solution using Mixture PF for RISS/GPS integration is examined by road-test trajectories in a land vehicle. The proposed method is compared with four other solutions: 1) 3-D solution using KF for full INS/GPS integration; 2) 2-D solution using KF for RISS/GPS integration; 3) 2-D solution using Mixture PF for RISS/GPS integration; and 4) 3-D solution using sampling/importance resampling (SIR) PF for RISS/GPS integration. The experimental results show that the proposed solution outperforms all the compared counterparts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available