4.6 Article

Phase Coherence Imaging of Grained Materials

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TUFFC.2011.1901

Keywords

-

Funding

  1. Spanish Ministry of Science and Innovation [DPI2010-17648]
  2. Community of Madrid [S2009/DPI-1802]

Ask authors/readers for more resources

Ultrasound detection and evaluation of flaws in materials showing structural noise (austenitic steels, titanium alloys, composites, etc.) is difficult because of the low flaw-to-grain noise ratio. Much research has been performed looking for methods to improve flaw detection in grained materials. Many approaches require a cumbersome tuning process to select the correct parameter values or to use iterative techniques. In this work, the technique of phase coherence imaging is proposed to improve the flaw-to-grain noise ratio. The technique weights the output of a conventional beamformer with a coherence factor obtained from the aperture data phase dispersion. It can be simply implemented in real-time and it operates automatically, without needing any parameter adjustment. This paper presents the theoretical basis of phase coherence imaging to reduce grain noise, as well as experimental results that confirm the expected performance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available