4.6 Article

Analysis of Multifrequency Langevin Composite Ultrasonic Transducers

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TUFFC.2009.1275

Keywords

-

Funding

  1. National Science Foundation of China [10674090]

Ask authors/readers for more resources

The multimode coupled vibration of Langevin composite ultrasonic transducers with conical metal mass of large cross-section is analyzed. The coupled resonance and anti-resonance frequency equations are derived and the effective electromechanical coupling coefficient is analyzed. The effect of the geometrical dimensions on the resonance frequency, the anti-resonance frequency, and the effective electromechanical coupling coefficient is studied. It is illustrated that when the radial dimension is large compared with the longitudinal dimension, the vibration of the Langevin transducer becomes a multifrequency multimode coupled vibration. Numerical methods are used to simulate the coupled vibration; the simulated results are in good agreement with those from the analytical results. Some Langevin transducers of large cross-section are designed and manufactured and their resonance frequencies are measured. It can be seen that the resonance frequencies obtained from the coupled resonance frequency equations are in good agreement with the measured results. It is expected that by properly choosing the dimensions, multifrequency Langevin transducers can be designed and used in ultrasonic cleaning, ultrasonic sonochemistry, and other applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available