4.3 Article

Biodegradable hyaluronic acid hydrogels to control release of dexamethasone through aqueous Diels-Alder chemistry for adipose tissue engineering

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.msec.2015.04.004

Keywords

Hyaluronic acid; Injectable hydrogel; Cell scaffold; Drug delivery; Tissue engineering

Funding

  1. Scientific Research Foundation for Returned Scholars, Ministry of Education of China
  2. National Natural Science Foundation of China [51103071]
  3. Zijin Intelligent Program of NJUST

Ask authors/readers for more resources

A robust synthetic strategy of biopolymer-based hydrogels has been developed where hyaluronic acid derivatives reacted through aqueous Diels-Alder chemistry without the involvement of chemical catalysts, allowing for control and sustain release of dexamethasone. To conjugate the hydrogel, furan and maleimide functionalized hyaluronic acid were synthesized, respectively, as well as furan functionalized dexamethasone, for the covalent immobilization. Chemical structure, gelation time, morphologies, swelling kinetics, weight loss, compressive modulus and dexamethasone release of the hydrogel system in PBS at 37 degrees C were studied. The results demonstrated that the aqueous Diels-Alder chemistry provides an extremely selective reaction and proceeds with high efficiency for hydrogel conjugation and covalent immobilization of dexamethasone. Cell culture results showed that the dexamethasone immobilized hydrogel was noncytotoxic and preserved proliferation of entrapped human adipose-derived stem cells. This synthetic approach uniquely allows for the direct fabrication of biologically functionalized gel scaffolds with ideal structures for adipose tissue engineering, which provides a competitive alternative to conventional conjugation techniques such as copper mediated click chemistry. (C) 2015 Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available