4.7 Article

On the Complexity of Joint Subcarrier and Power Allocation for Multi-User OFDMA Systems

Journal

IEEE TRANSACTIONS ON SIGNAL PROCESSING
Volume 62, Issue 3, Pages 583-596

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TSP.2013.2293130

Keywords

Computational complexity; OFDMA system; power control; subcarrier allocation; system utility maximization

Funding

  1. China National Funds for Distinguished Young Scientists [11125107]
  2. National Natural Science Foundation [11331012, 11301516, 81173633]
  3. CAS Program for Cross & Cooperative Team of the Science & Technology Innovation

Ask authors/readers for more resources

Consider a multi-user orthogonal frequency division multiple access (OFDMA) system where multiple users share multiple discrete subcarriers, but at most one user is allowed to transmit power on each subcarrier. To adapt fast traffic and channel fluctuations and improve the spectrum efficiency, the system should have the ability to dynamically allocate subcarriers and power resources to users. Assuming perfect channel knowledge, two formulations for the joint subcarrier and power allocation problem are considered in this paper: the first is to minimize the total transmission power subject to the quality of service constraints and the OFDMA constraint, and the second is to maximize some system utility function subject to the total transmission power constraint per user and the OFDMA constraint. In spite of the existence of various heuristics approaches, little is known about the computational complexity status of the above problem. This paper aims at filling this theoretical gap, i.e., characterizing the complexity of the joint subcarrier and power allocation problem for the multi-user OFDMA system. It is shown in this paper that both formulations of the joint subcarrier and power allocation problem are strongly NP-hard. Several subclasses of the problem which can be solved efficiently in polynomial time are also identified. These complexity results suggest that there are not polynomial time algorithms that are able to solve the general joint subcarrier and power allocation problem to global optimality (unless P = NP), and determining an approximately optimal subcarrier and power allocation strategy is more realistic in practice.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available