4.7 Article

A General Robust Linear Transceiver Design for Multi-Hop Amplify-and-Forward MIMO Relaying Systems

Journal

IEEE TRANSACTIONS ON SIGNAL PROCESSING
Volume 61, Issue 5, Pages 1196-1209

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TSP.2013.2243439

Keywords

Amplify-and-forward (AF); matrix-variate optimization; MIMO relaying; robust transceiver design

Funding

  1. National Natural Science Foundation of China [61101130]
  2. Hong Kong General Research Fund [719111]

Ask authors/readers for more resources

In this paper, linear transceiver design for multi-hop amplify-and-forward (AF) multi-input multi-output (MIMO) relaying systems with Gaussian distributed channel estimation errors is investigated. Commonly used transceiver design criteria including weighted mean-square-error (MSE) minimization, capacity maximization, worst-MSE/MAX-MSE minimization and weighted sum-rate maximization, are considered and unified into a single matrix-variate optimization problem. A general robust design algorithm is proposed to solve the unified problem. Specifically, by exploiting majorization theory and properties of matrix-variate functions, the optimal structure of the robust transceiver is derived when either the covariance matrix of channel estimation errors seen from the transmitter side or the corresponding covariance matrix seen from the receiver side is proportional to an identity matrix. Based on the optimal structure, the original transceiver design problems are reduced to much simpler problems with only scalar variables whose solutions are readily obtained by an iterative water-filling algorithm. A number of existing transceiver design algorithms are found to be special cases of the proposed solution. The differences between our work and the existing related work are also discussed in detail. The performance advantages of the proposed robust designs are demonstrated by simulation results.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available