4.7 Article

Low-Complexity DOA Estimation Based on Compressed MUSIC and Its Performance Analysis

Journal

IEEE TRANSACTIONS ON SIGNAL PROCESSING
Volume 61, Issue 8, Pages 1915-1930

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TSP.2013.2243442

Keywords

Alternative projection method (APM); compressed multiple signal classification (C-MUSIC); direction-of-arrival (DOA) estimation; noise-like subspace cluster (NLSC); performance analysis; singular value decomposition (SVD)

Ask authors/readers for more resources

This paper presents a new computationally efficient method for direction-of-arrival (DOA) estimation with arbitrary arrays. The total angular field-of-view is first divided into several small sectors and the original noise subspace exploited by the multiple signal classification (MUSIC) algorithm is mapped from one sector to the other sectors by a Hadarmard product transformation. This transformation gives a new noise-like subspace cluster (NLSC), whose intersection is found to be simultaneously orthogonal to the steering vectors associated with the true DOAs and several virtual DOAs. Based on such a multiple orthogonality, a novel compressed MUSIC (C-MUSIC) spatial spectrum at hand is derived. Unlike MUSIC with tremendous spectral search, C-MUSIC involves a limited search over only one sector, and hence it is computationally very attractive. To obtain the intersection of NLSC for more than two sectors, a low-complexity method is also proposed in the present work, which shows advantages over the existing alternative projection method (APM) and singular value decomposition (SVD) techniques. Furthermore, the mean square errors (MSEs) of the proposed estimator is derived. Simulation results illustrate that C-MUSIC trades-off MSEs by complexity and resolution as compared to the standard MUSIC efficiently.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available