4.7 Article

Novel low-density signature for synchronous CDMA systems over AWGN channel

Journal

IEEE TRANSACTIONS ON SIGNAL PROCESSING
Volume 56, Issue 4, Pages 1616-1626

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TSP.2007.909320

Keywords

chip-level iterative SISO MUD; Gaussian channel; low-density signature; message passing algorithm; overloaded condition

Ask authors/readers for more resources

Novel low-density signature (LDS) structure is proposed for transmission and detection of symbol-synchronous communication over memoryless Gaussian channel. Given N as the processing gain, under this new arrangement, users' symbols are spread over N chips but virtually only d(v) < N chips that contain nonzero-values. The spread symbol is then so uniquely interleaved as the sampled, at chip rate, received signal contains the contribution from only d(c) < K number of users, where K denotes the total number of users in the system. Furthermore, a near-optimum chip-level iterative soft-in-soft-out (SISO) multiuser decoding (MUD), which is based on message passing algorithm (MPA) technique, is proposed to approximate optimum detection by efficiently exploiting the LDS structure. Given beta = K/N as the system loading, our simulation suggested that the proposed system alongside the proposed detection technique, in AWGN channel, can achieve an overall performance that is close to single-user performance, even when the system has 200% loading, i.e., when beta = 2. Its robustness against near-far effect and its performance behavior that is very similar to optimum detection are demonstrated in this paper. In addition, the complexity required for detection is now exponential to d(c) instead of K as in conventional code division multiple access (CDMA) structure employing optimum multiuser detector.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available