4.7 Article

Consensus in ad hoc WSNs with noisy links - Part II: Distributed estimation and smoothing of random signals

Journal

IEEE TRANSACTIONS ON SIGNAL PROCESSING
Volume 56, Issue 4, Pages 1650-1666

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TSP.2007.908943

Keywords

distributed estimation; Kalman smoother; nonlinear optimization; wireless sensor networks (WSNs)

Ask authors/readers for more resources

Distributed algorithms are developed for optimal estimation of stationary random signals and smoothing of (even nonstationary) dynamical processes based on generally correlated observations collected by ad hoc wireless sensor networks (WSNs). Maximum a posteriori (MAP) and linear minimum mean-square error (LMMSE) schemes, well appreciated for centralized estimation, are shown possible to reformulate for distributed operation through the iterative (alternating-direction) method of multipliers. Sensors communicate with single-hop neighbors their individual estimates as well as multipliers measuring how far local estimates are from consensus. When iterations reach consensus, the resultant distributed (D) MAP and LMMSE estimators converge to their centralized counterparts when inter-sensor communication links are ideal. The D-MAP estimators do not require the de,sired estimator to be expressible in closed form, the D-LMMSE ones are provably robust to communication or quantization noise and both are particularly simple to implement when the data model is linear-Gaussian. For decentralized tracking applications, distributed Kalman filtering and smoothing algorithms are derived for any-time MMSE optimal consensus-based state estimation using WSNs. Analysis and corroborating numerical examples, demonstrate the merits of the novel distributed estimators.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available