4.3 Article

Synthesis and characterization of silane coated magnetic nanoparticles/glycidylmethacrylate-grafted-maleated cyclodextrin composite hydrogel as a drug carrier for the controlled delivery of 5-fluorouracil

Publisher

ELSEVIER
DOI: 10.1016/j.msec.2015.05.068

Keywords

Controlled drug delivery; 5-Fluorouracil; Magnetic nanoparticles; Cyclodextrin; Graft polymers; Cytotoxicity

Ask authors/readers for more resources

A novel drug delivery system (DDS), 3-methacryloxypropyl trimethoxy silane coated magnetic nanoparticles polymerized with glycidylmethacrylate-grafted-maleated cyclodextrin (MPTMS-MNP-poly-(GMA-g-MACD)) was prepared in the presence of ethyleneglycoldimethacrylate as cross-linker and a,a'-azobisisobutyronitrile as initiator and characterized by means of SEM, FT-IR, XRD, DLS, VSM and TEM. The encapsulation efficiency (EE) and drug loading efficiency (DLE) of the DDS were tested using various formulations of DDS. The DDS showed activity against gram positive and negative bacteria. The cytotoxicity studies were also performed using MCF-7 (human breast carcinoma) cells and found that the drug carrier is biocompatible and it shows sustained and controlled release of drug to the targeted site. The drug release mechanism was found to obey non-Fickian diffusion (n = 0.709) method where polymer relaxation and drug diffusion played important roles in drug release. In this DDS, advantages of core magnetic nanoparticles and host-guest interactions of beta-CD were combined for the controlled delivery of 5-Fluorouracil (5-FU) to maintain the therapeutic index of the drug. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available