4.7 Article

Optimal Motion Strategies for Range-Only Constrained Multisensor Target Tracking

Journal

IEEE TRANSACTIONS ON ROBOTICS
Volume 24, Issue 5, Pages 1168-1185

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TRO.2008.2004488

Keywords

Active sensing; linear programming (LP) relaxation (LPR); mobile sensors; modified Gauss-Seidel relaxation (MGSR); target tracking

Categories

Funding

  1. University of Minnesota (DTC)
  2. National Science Foundation [EIA-0324864, IIS-0643680, IIS-0811946]

Ask authors/readers for more resources

In this paper, we study the problem of optimal trajectory generation for a team of mobile sensors tracking a moving target using distance-only measurements. This problem is shown to be NP-Hard, in general, when constraints are imposed on the speed of the sensors. We propose two algorithms, modified Gauss-Seidel relaxation and linear programming (LP) relaxation, for determining the set of feasible locations that each sensor should move to in order to collect the most informative measurements; i.e., distance measurements that minimize the uncertainty about the position of the target. These algorithms are applicable regardless of the process model that is employed for describing the motion of the target, while their computational complexity is linear in the number of sensors. Extensive simulation results are presented demonstrating that the performance attained with the proposed methods is comparable to that obtained with grid-based exhaustive search, whose computational cost is exponential in the number of sensors, and significantly better than that of a random, toward the target, motion strategy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available