4.7 Article

Optimal Coordinated Control of Multiple Battery Energy Storage Systems for Primary Frequency Regulation

Journal

IEEE TRANSACTIONS ON POWER SYSTEMS
Volume 34, Issue 1, Pages 555-565

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TPWRS.2018.2868504

Keywords

Battery energy storage; primary frequency regulation

Funding

  1. Research Grants Council of Hong Kong [14200315]

Ask authors/readers for more resources

In this paper, we consider a battery aggregator that coordinates a number of distributed battery energy storage systems (BESSs) to provide primary frequency control service in the ancillary service market. In particular, we propose a profit-maximizing BESS coordination strategy that is concerned with two operational phases, namely a frequency regulation phase and a state-of-charge (SoC) recovery phase. Regarding the frequency regulation phase, we minimize the regulation failure penalty by optimally coordinating the operation of multiple BESSs in response to local frequency deviations. The proposed coordination algorithm is online optimal in the sense that it does not require any knowledge of the future information, and yet achieves exactly the same optimal performance as if the entire future information is known. On the other hand, during idle periods, the BESSs shall recover their SoCs to a proper range to avoid regulation failure in the next frequency excursion event. We propose a SoC recovery strategy that is not only optimal, but also state invariant and separable in the sense that the target SoC range of each BESS neither varies with its own SoC nor depends on the operation of other BESSs. As such, the target SoC ranges can be calculated once and for all, resulting in extremely low run-time complexity. Numerical results based on real power system frequency measurement data show that the proposed algorithm significantly outperforms a number of benchmark algorithms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available