4.7 Article

Enhancement of PV Penetration With DSTATCOM in Taipower Distribution System

Journal

IEEE TRANSACTIONS ON POWER SYSTEMS
Volume 28, Issue 2, Pages 1560-1567

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TPWRS.2012.2226063

Keywords

Net present value; photovoltaic; payback year

Funding

  1. National Science Council of Republic of China [NSC 101-3113-P-214-002]

Ask authors/readers for more resources

The PV penetration level of a distribution system is often limited by the violation of voltage variation caused by large intermittent power generation. This study investigates the use of a distribution static compensator (DSTATCOM) in reactive power compensation for system voltage control, during peak solar irradiation, in order to increase the PV installation capacity of a distribution feeder and avoid the voltage violation problem. PV power generation is simulated using hourly solar irradiation and temperature data provided by the weather bureau. The voltage variation at the point of common coupling (PCC) is also derived by executing the 3-phi load flow analysis to determine the maximum PV power injection without causing voltage violation. By applying the proposed voltage control scheme of DSTATCOM during high solar irradiation periods, the total power generation and the total energy delivered by the PV system over one year are determined according to the annual duration of solar irradiation. The annual sales of PV power, the system O & M cost, the cost of DSTATCOM installation and the initial capital investment for a PV system are then used to calculate the cash flow over the system life-cycle and the final net present value (NPV) of the PV project. With the proposed DSTATCOM voltage control to perform reactive power compensation, the optimal installation capacity of PV systems can be determined by maximizing the net present value of the system to ensure the best cost-effectiveness of the PV project and to better utilize solar energy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available