4.8 Article

Electronic Tuning of Misaligned Coils in Wireless Power Transfer Systems

Journal

IEEE TRANSACTIONS ON POWER ELECTRONICS
Volume 29, Issue 11, Pages 5975-5982

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TPEL.2014.2297993

Keywords

Coupling circuits; inductive power transmission; resonant inverters; tunable circuits and devices

Ask authors/readers for more resources

The misalignment and displacement of inductively coupled coils in a wireless power transfer system (WPT) can degrade the power efficiency and limit the amount of power that can be transferred. Coil misalignment leads the primary coil driver to operate in an untuned state which causes nonoptimum switching operation and results in an increase in switching losses. This paper presents a novel method to electronically tune a Class-E inverter used as a primary coil driver in an inductive WPT system to minimize the detrimental effects of misalignment between the inductively coupled coils which may occur during operation. The tuning method uses current-controlled inductors (saturable reactors) and a variable switching frequency to achieve optimum switching conditions regardless of the misalignment. Mathematical analysis is performed on a Class-E inverter based on an improved model of a resonant inductive link. Experimental results are presented to confirm the analysis approach and the suitability of the proposed tuning method.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available