4.8 Article

Operation of Wind-Turbine-Driven DFIG Systems Under Distorted Grid Voltage Conditions: Analysis and Experimental Validations

Journal

IEEE TRANSACTIONS ON POWER ELECTRONICS
Volume 27, Issue 5, Pages 2354-2366

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TPEL.2011.2174255

Keywords

Doubly fed induction generator (DFIG); harmonic distortion; proportional integral plus resonant (PI-R) controller; software PLL; wind power generation

Funding

  1. National Natural Science Foundation of China [50907057]

Ask authors/readers for more resources

This paper presents enhanced control strategies for doubly fed induction generator (DFIG)-based wind power generation systems under distorted grid voltage conditions. The mathematical model of DFIG, in view of the fifth-and seventh-order components of grid voltage harmonics, is proposed and analyzed in detail. Based on the analytical model, further studies are conducted on the distortions of stator/rotor currents and the oscillations in the stator active/reactive powers as well as the electromagnetic torque, where the impact of DFIG's load conditions is considered. Meanwhile, alternative rotor current references are calculated to enhance the uninterruptable operation capability of the wind-turbine-driven DFIG systems under distorted grid conditions. An improved software PLL is designed, which is capable of accurately and rapidly tracking the frequency and phase angle of the fundamental grid voltage under distorted grid conditions. A proportional integral plus resonant (PI-R) current controller in the synchronously rotating (dq)(+) reference frame is employed to simultaneously regulate the fundamental and harmonic components of rotor currents without any sequential component decomposition. Experiment results on a 3-kW DFIG prototype demonstrate the correctness of the analytical results and the effectiveness of the software PLL and PI-R current controller when the grid voltage is distorted.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available