4.8 Article

Optimizing the Normalized Dead-Time and Maximum Switching Frequency of a Wide-Adjustable-Range LLC Resonant Converter

Journal

IEEE TRANSACTIONS ON POWER ELECTRONICS
Volume 26, Issue 2, Pages 462-472

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TPEL.2010.2068563

Keywords

Dead-time; LLC resonant converter; switched mode power supply (SMPS); time-domain analysis; zero current switching (ZCS); zero voltage switching (ZVS)

Ask authors/readers for more resources

LLC resonant converter has been widely used in dc-dc converters. In this paper, optimum dead-time and maximum switching frequency of a wide-adjustable-range LLC resonant converter are investigated for realizing the zero voltage switching (ZVS) operation even under the worst-case conditions. Analyses demonstrate that these parameters depend on the converter inductance ratio and ratio of the converter resonant capacitor and the effective capacitance appeared in parallel with the drain-sources of the power MOSFETs. The necessary dead time for realizing the ZVS operation can be minimized by choosing the normalized maximum switching frequency, properly. Using the dead-time optimum value, soft switching is achieved for all power devices even under the worst-case conditions. Developed prototype of the converter has been tested under different loads (0-3 A dc) and input voltage conditions (320-370 V dc) to achieve a wide-adjustable-range output voltage (40-165 V dc). This dc-dc converter is used as an ion implanter arc power supply. The calculated optimum dead-time and maximum switching frequency are approximately equal to 184 ns and 205.7 kHz, for realizing the ZVS operation at the worst-case conditions. These parameters in the prototype are approximately equal to 195 ns and 203.5 kHz, respectively.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available