4.6 Article

Single-Phase Transformer Inrush Current Reduction Using Prefluxing

Journal

IEEE TRANSACTIONS ON POWER DELIVERY
Volume 27, Issue 1, Pages 245-252

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TPWRD.2011.2174162

Keywords

Inrush current reduction; residual flux; transformer

Funding

  1. Schweitzer Engineering Laboratories, Inc.

Ask authors/readers for more resources

Power transformers can experience large inrush currents upon energization, the severity of which depends on the source strength, the leakage impedance and residual flux of the transformer, and the angle of the applied voltage at energization. A novel inrush current reduction strategy has been implemented which involves setting a single-phase transformer's residual flux to a known polarity after the transformer has been de-energized, a process called prefluxing, and controlling the instant of transformer energization based on the flux polarity, seeking not to eliminate inrush current but to substantially reduce it. Unlike a popular suggested solution, this strategy does not require prior knowledge of the transformer's flux. The device used for prefluxing is simple in construction and operates at substantially lower voltage levels when compared to the transformer's rated voltage. The presented strategy has been successfully implemented on an 18-kVA laboratory transformer with inrush current levels reduced below the rated current of the transformer even when accounting for typical breaker deviations. This paper describes the operation of the reduction strategy, including theory, device sizing, and implementation, and presents the successful laboratory results, all of which provide the basis for implementing inrush current reduction in three-phase transformers using a three-pole circuit breaker.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available