4.3 Article

Feasibility and Performance of a Tapered Helical Pulse-Forming Line-Based Pulse Transformer

Journal

IEEE TRANSACTIONS ON PLASMA SCIENCE
Volume 41, Issue 4, Pages 980-984

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TPS.2013.2248386

Keywords

Equivalent series inductance; helical pulse forming line; high-power microwaves; pulsed power systems; tapered pulse forming line

Ask authors/readers for more resources

Conventional pulsed power devices such as Marx generators, Tesla transformers, and cable-based generators are usually bulky and occupy a large volume when used for generating high-voltage pulses of duration longer than 100 ns. Cable-based generators also have the limitation of generating half the charging voltage when delivering the entire energy into a matched load. Inductive energy storage systems provide an alternate and effective scheme to overcome these issues. However, their efficiency depends upon the performance of opening switches. Also, inductive energy storage systems do not typically generate flat-top voltage pulses that are desirable for driving various pulsed power loads. In this paper, a new device, named the tapered helical pulse-forming line-based pulse transformer (THPFL-PT), is designed to overcome the above-mentioned drawbacks. The device performs two actions at the same time, i.e., it steps up the input charging voltage, and it generates a flat-top nanosecond voltage pulse. It is developed and characterized at low voltages to verify the feasibility of the concept developed and design parameters. The entire device is compact, with length of about 330 mm. It is capable of generating a voltage pulse of magnitude higher than the charging voltage with a duration of about 100 ns and almost a flat-top profile.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available