4.3 Article

Bactericidal Effect of Corona Discharges in Atmospheric Air

Journal

IEEE TRANSACTIONS ON PLASMA SCIENCE
Volume 40, Issue 10, Pages 2322-2333

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TPS.2012.2193621

Keywords

Corona discharges; inactivation of microorganisms

Ask authors/readers for more resources

This paper explores the possibilities of using impulsive and steady-state corona discharges for biodecontamination operations. A high tension tubular corona electrode was stressed with positive or negative dc voltage with magnitude up to 26 kV, and a grounded mesh was used as an opposite electrode. Different operational regimes of this corona generator were investigated for the production of ozone in air flow and the inactivation of microorganisms. The test microorganisms used in this work were Escherichia coli and Staphylococcus aureus, populations of which were seeded onto agar plates. These bacterial plates were located behind the grounded mesh electrode to assess bactericidal efficacy. The results show that corona discharges have a strong bactericidal effect, for example, positive flashing corona discharges were able to reduce populations of the test microorganism by similar to 94% within a 30-60-s time interval. Negative steady-state corona discharges also produce noticeable bactericidal effect, reducing population of E. coli and S. aureus by more than 97% within a 120-s energization interval. The bactericidal efficiency of different corona discharge modes and its correlation with ozone levels produced by these discharges are discussed. The results obtained in this work will help in the design and development of compact plasma systems for environmental applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available