4.8 Article

A Game-Theoretic Approach to Hypergraph Clustering

Journal

Publisher

IEEE COMPUTER SOC
DOI: 10.1109/TPAMI.2012.226

Keywords

Hypergraph clustering; evolutionary game theory; polynomial optimization; Baum-Eagon inequality; high-order replicator dynamics

Funding

  1. FET programme within EU FP7 under the SIMBAD project [213250]

Ask authors/readers for more resources

Hypergraph clustering refers to the process of extracting maximally coherent groups from a set of objects using high-order (rather than pairwise) similarities. Traditional approaches to this problem are based on the idea of partitioning the input data into a predetermined number of classes, thereby obtaining the clusters as a by-product of the partitioning process. In this paper, we offer a radically different view of the problem. In contrast to the classical approach, we attempt to provide a meaningful formalization of the very notion of a cluster and we show that game theory offers an attractive and unexplored perspective that serves our purpose well. To this end, we formulate the hypergraph clustering problem in terms of a noncooperative multiplayer clustering game, and show that a natural notion of a cluster turns out to be equivalent to a classical (evolutionary) game-theoretic equilibrium concept. We prove that the problem of finding the equilibria of our clustering game is equivalent to locally optimizing a polynomial function over the standard simplex, and we provide a discrete-time high-order replicator dynamics to perform this optimization, based on the Baum-Eagon inequality. Experiments over synthetic as well as real-world data are presented which show the superiority of our approach over the state of the art.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available